首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45269篇
  免费   2871篇
  国内免费   6497篇
  2024年   44篇
  2023年   714篇
  2022年   817篇
  2021年   1412篇
  2020年   1281篇
  2019年   1679篇
  2018年   1364篇
  2017年   1267篇
  2016年   1271篇
  2015年   1596篇
  2014年   2263篇
  2013年   2915篇
  2012年   2087篇
  2011年   2309篇
  2010年   1982篇
  2009年   2366篇
  2008年   2535篇
  2007年   2675篇
  2006年   2629篇
  2005年   2425篇
  2004年   2241篇
  2003年   2121篇
  2002年   1825篇
  2001年   1517篇
  2000年   1297篇
  1999年   1186篇
  1998年   1068篇
  1997年   926篇
  1996年   825篇
  1995年   871篇
  1994年   820篇
  1993年   627篇
  1992年   579篇
  1991年   454篇
  1990年   398篇
  1989年   304篇
  1988年   294篇
  1987年   278篇
  1986年   216篇
  1985年   218篇
  1984年   173篇
  1983年   119篇
  1982年   153篇
  1981年   89篇
  1980年   94篇
  1979年   82篇
  1978年   79篇
  1977年   34篇
  1976年   45篇
  1974年   25篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Splicing patterns in human immunodeficiency virus type 1 (HIV-1) are maintained through cis regulatory elements that recruit antagonistic host RNA-binding proteins. The activity of the 3′ acceptor site A7 is tightly regulated through a complex network of an intronic splicing silencer (ISS), a bipartite exonic splicing silencer (ESS3a/b), and an exonic splicing enhancer (ESE3). Because HIV-1 splicing depends on protein-RNA interactions, it is important to know the tertiary structures surrounding the splice sites. Herein, we present the NMR solution structure of the phylogenetically conserved ISS stem loop. ISS adopts a stable structure consisting of conserved UG wobble pairs, a folded 2X2 (GU/UA) internal loop, a UU bulge, and a flexible AGUGA apical loop. Calorimetric and biochemical titrations indicate that the UP1 domain of heterogeneous nuclear ribonucleoprotein A1 binds the ISS apical loop site-specifically and with nanomolar affinity. Collectively, this work provides additional insights into how HIV-1 uses a conserved RNA structure to commandeer a host RNA-binding protein.  相似文献   
52.
The Rhynchosciara americana C3-22 gene is located in an amplified domain and is developmentally expressed. The aim of the present work was to identify intrinsically bent DNA sites in a segment containing the gene promoter and downstream sequence. The results indicated that this gene is flanked by intrinsically bent DNA sites. Three bent DNA sites (b?3, b?2, and b?1) were localized in the promoter, and one was localized downstream of the gene (b+1). These sites had helical parameters that confirmed the curved structure, as well as segments with left-handed superhelical writhe. In silico analysis of the promoters of four other insect genes, which encode secreted polypeptides, showed that they all had curved structures and similar helical parameters. Correlation with other results indicates that the detected intrinsically bent DNA sites that flank the C3-22 gene might be a consensus feature of the gene structure in the amplified domains.  相似文献   
53.
Abstract .The susceptibility of field-collected Culicoides bolitinos to infection by oral ingestion of bluetongue virus serotypes 1, 3 and 4 (BLU 1, 3 and 4) was compared with that of field-collected C. imicola and laboratory reared C. variipennis sonorensis . The concentration of the virus per millilitre of bloodmeal was 105.0 and 106.0TCID50 for BLU 4 and 107.2TCID50 for BLU 1 and 3. Of 4927 C. bolitinos and 9585 C. imicola fed, 386 and 287 individual midges survived 10 days extrinsic incubation, respectively. Midges were assayed for the presence of virus using a microtitration assay on BHK-21 cells and/or an antigen capture ELISA. Infection prevalences for the different serotypes as determined by virus isolation ranged from 22.7 to 82.0% in C. bolitinos and from 1.9 to 9.8% in C. imicola; infection prevalences were highest for BLU 1, and lowest for BLU 4 in both species. The mean log10 TCID50 titre of the three BLU viruses per single fly was higher in C. bolitinos than in C. imicola . The results suggested that C. bolitinos populations are capable vectors of the BLU viruses in South Africa. A high correlation was found between virus isolation and ELISA results for the detection of BLU 1, and less for BLU 4; the ELISA failed to detect the presence of BLU 3 in infected flies. The C. v. sonorensis colonies had a significantly lower susceptibility to infection with BLU 1, 3 and 4 than C. bolitinos and C. imicola . However, since infection prevalence of C. v. sonorensis was determined only by ELISA, this finding may merely reflect the insensitivity of this assay at low virus titres, compared to virus isolation.  相似文献   
54.
The therapeutic application of siRNA suffers from poor bioavailability caused by rapid degradation and elimination. The covalent attachment of PEG is a universal concept to increase molecular size and enhance the pharmacokinetic properties of biomacromolecules. We devised a facile approach for attachment of PEG molecules with a defined molecular weight, and successful purification of the resulting conjugates. We directly conjugated structurally defined PEG chains with twelve ethylene glycol units to the 3′-terminal hydroxyl group of both sense and antisense strands via an aminoalkyl linker. The conjugates were easily purified by HPLC and successful PEGylation and molecule integrity were confirmed by ESI-MS. The evaluation of in vitro gene knockdown of two different targets in MCF-7 breast cancer cells showed stable pharmacologic activity when combined with a standard transfection reagent. Sense strand PEGylation even increased the silencing potency of a CRCX4-siRNA which had modest activity in its wild-type form. The results indicate that PEG chains at the 3′-terminus of both strands of siRNA are well tolerated by the RNAi effector. The attachment of short, chemically defined PEG chains is a feasible approach to improve the pharmacokinetic properties of siRNA, and can be combined with other targeted and untargeted delivery vehicles.  相似文献   
55.
56.
Identification of different protein functions facilitates a mechanistic understanding of Japanese encephalitis virus (JEV) infection and opens novel means for drug development. Support vector machines (SVM), useful for predicting the functional class of distantly related proteins, is employed to ascribe a possible functional class to Japanese encephalitis virus protein. Our study from SVMProt and available JE virus sequences suggests that structural and nonstructural proteins of JEV genome possibly belong to diverse protein functions, are expected to occur in the life cycle of JE virus. Protein functions common to both structural and non-structural proteins are iron-binding, metal-binding, lipid-binding, copper-binding, transmembrane, outer membrane, channels/Pores - Pore-forming toxins (proteins and peptides) group of proteins. Non-structural proteins perform functions like actin binding, zinc-binding, calcium-binding, hydrolases, Carbon-Oxygen Lyases, P-type ATPase, proteins belonging to major facilitator family (MFS), secreting main terminal branch (MTB) family, phosphotransfer-driven group translocators and ATP-binding cassette (ABC) family group of proteins. Whereas structural proteins besides belonging to same structural group of proteins (capsid, structural, envelope), they also perform functions like nuclear receptor, antibiotic resistance, RNA-binding, DNA-binding, magnesium-binding, isomerase (intra-molecular), oxidoreductase and participate in type II (general) secretory pathway (IISP).  相似文献   
57.
58.
A group I intron that can be spliced in vivo and in vitro was identified in the flagellin gene of the thermophilic bacterium Geobacillus stearothermophilus. We also found one or two intervening sequences (IVS) of flagellin genes in five additional bacterial species. Furthermore, we report the presence of these sequences in two sites of a highly conserved region in the flagellin gene.  相似文献   
59.
《Process Biochemistry》2014,49(5):882-889
The VP4 protein of infectious bursal disease virus (IBDV) is a serine protease that processes the polyprotein for viral assembly. VP4 has been found to associate primarily with type II IBDV tubules that are 24 nm in diameter. In this study, a chimeric VP4, assigned as HS1VP4, was constructed with a VP4-autocleavage site inserted between the N-terminal His-tag and the VP4 sequence. The results showed that the VP4 forms tubules after the self-cleavage of HS1VP4 when expressed in Escherichia coli. Furthermore, a deletion of 28 amino acids at the C-terminus of VP4 resulted in monomers and dimers instead of tubule formation; mutants of S652A and K692A at active site destroyed the activity. The endopeptidase activity of these monomers and dimers was approximately 12.5 times higher than that of VP4 tubules. Additionally, the formation of tubules inhibited VP4 protease activity, as demonstrated through in vitro assays. The production and characterization of monomers or dimers that have greater endopeptidase activity and protease activity than tubules can provide further insight into VP4 tubule assembly and the regulation of VP4 activity in host cells; this insight will facilitate the development of new anti-IBDV strategies.  相似文献   
60.
Abstract The 3D gene of foot-and-mouth disease virus encodes the viral RNA dependent RNA polymerase, also called virus infection associated (VIA) antigen, which is the most important serological marker of virus infection. This 3D gene from a serotype Cl virus has been cloned and overexpressed in Escherichia coli under the control of the strong lambda lytic promoters. The resulting 51 kDa recombinant protein has been shown to be immunoreactive with sera from infected animals. After induction of gene expression, an immediate and dramatic arrest of cell DNA synthesis occurs, similar to that produced by genotoxic doses of the drug mitomycin C. This effect does not occur during the production of either a truncated VIA antigen or other related and non-related viral proteins. The inhibition of DNA replication results in a subsequent induction of the host SOS DNA-repair response and in an increase of the mutation frequency in the surviving cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号